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Abstract

Behaviour analysis should form an integral part of the software development process. This is particularly
important in the design of concurrent and distributed systems, where complex interactions can cause unexpected
and undesired system behaviour. We advocate the use of a compositional approach to analysis. The software
architecture of a distributed program is represented by a hierarchical composition of subsystems, with interacting
processes at the leaves of the hierarchy. Compositional reachability analysis (CRA) exploits the compositional
hierarchy for incrementally constructing the overall behaviour of the system from that of its subsystems. In the
Tracta CRA approach, both processes and properties reflecting system specifications are modelled as state
machines. Property state machines are composed into the system and violations are detected on the global
reachability graph obtained. The property checking mechanism has been specifically designed to deal with
compositional techniques. Tracta is supported by an automated tool compatible with our environment for the
development of distributed applications.

1. Introduction

Background

Distributed processing is widely used to provide computing support for diverse applications. Many of these
applications are complex and critical; an error can have catastrophic consequences. Behaviour analysis is a useful
technique that can help discover defects and check if a system performs as intended. Such analysis can be applied
to a finite state model of the system.

Reachability analysis consists of constructing the product state space of all components in the system, where the
behaviour of each component is modelled as a finite state interacting process. Automated tools provide significant
help in making the analysis of large systems manageable. Reachability analysis owes much of its popularity to the
fact that it is fairly easy to automate.

The main disadvantage of this technique is state explosion, the exponential relation between the system state space
and the number of its constituent components. Great effort has been made to avoid this problem by not having to
construct the complete state graph. Automated techniques that reduce the size of the graph to be explored without
compromising exhaustive search can be roughly classified into two approaches. Reduction by partial orders avoids
the generation of all paths formed by the interleaving of the same set of transitions (Godefroid and Wolper 91,
Holzmann, et al. 92). Reduction by compositional minimisation bases reduction on intermediate simplification of
subsystems (Cheung and Kramer 96b, Graf and Steffen 90, Krimm and Mounier 97, Valmari 93b). Techniques in
the latter category are known as compositional reachability analysis (CRA). CRA is a good complement to a
compositional software development process.

In CRA, the system is decomposed into a hierarchy of subsystems. The behaviour of the system is then composed
stepwise from those of its subsystems in a bottom-up manner. At every intermediate stage of the analysis, internal
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details of subsystem behaviour are hidden and the subsystem is minimised. The observable behaviour of a
subsystem where internal details are hidden can generally be represented by a smaller state machine. The key to
the success of the technique is therefore to hide as many internal actions as possible in each subsystem.

Although CRA may significantly reduce the state space of the global system, it is susceptible to intermediate state
explosion. Intermediate state explosion occurs when components of the system explode faster than the system
itself. When constrained by activities of their context, these components usually have a much smaller state space.
Various techniques have been proposed for addressing this problem (Cheung and Kramer 96b, Graf and Steffen
90, Krimm and Mounier 97, Yeh 93a). The most successful rely on composing intermediate subsystems with
processes that restrict their behaviour according to their context. Such processes, which we refer to as contextual
interfaces, can be automatically generated (Cheung and Kramer 96b, Krimm and Mounier 97) or user-specified
(Cheung and Kramer 96b, Graf and Steffen 90, Krimm and Mounier 97).

Reachability analysis and CRA concentrate on the construction of a finite model for a system, based on the models
of its components.  In order to analyse the finite model of a system for desired properties, two general approaches
are used in practice (Clarke and Wing 96a). In the first approach, properties are expressed in a temporal logic, and
an efficient search procedure is used to check if a given state transition system is a model for the specification. In
the second approach, the specifications are also given as state transition systems. In this case, the system is
compared to the specification to determine whether its behaviour conforms to the behaviour of the specification.
Vardi and Wolper in (Vardi and Wolper 86) establish an automata theoretic approach to verification, which
consists of expressing temporal logic with automata, and using these to analyse the system.

Tracta

Tracta is a CRA approach that follows the automata theoretic approach to program verification. In order to
integrate analysis with other activities of software development, Tracta uses software architecture to direct
analysis. In general, the software architecture of a distributed system has a hierarchical structure (Magee, et al. 94).
Therefore in Tracta, the compositional hierarchy is not introduced solely for the purpose of analysis. Rather, it is
directly extracted from the architectural description of the system under development.

To deal with intermediate state explosion, Tracta supports both user-specified and automatically generated
contextual interfaces. This part of the Tracta approach is not presented in this paper, as it is extensively discussed
in (Cheung and Kramer 96b). In Tracta, properties are introduced into analysis as finite state automata. Properties
are separated into two classes, safety and liveness, with different checking mechanisms for each. The property
automata specified by the user are transformed and included in the compositional hierarchy of the system.
Properties do not interfere with the system behaviour, unless they are violated, in which case they are detected.
Tracta has the power to validate multiple properties at the same time. The checking mechanisms of Tracta have a
number of advantages. Firstly, action hiding is independent of property checking. This means that properties may
involve actions that are internal to subsystems, even though these actions are not visible at the global system level.
Moreover, in the presence of violations, the properties introduced may further reduce the size of both the
subsystems, and the global system analysed.

Related work

A number of tools have been developed that support the analysis approaches discussed in this section.  SPIN
(Holzmann 91) performs reachability analysis on a set of processes specified as labelled transition systems in the
specification language PROMELA. SPIN checks that a program satisfies properties expressed as Büchi automata.
Properties can also be expressed in linear time temporal logic, in which case they are automatically translated into
automata. The SPIN system uses partial-order reduction techniques to control state explosion. The Symbolic
Model Verifier SMV (McMillan 93) checks that a system satisfies properties expressed in the branching time
temporal logic CTL. The tool uses binary decision diagrams (BDDs) to represent state transition systems
efficiently. This representation increases the size of the systems that can be verified. The SPIN and SMV systems
do not perform analysis in a compositional way.

The CADP tool-set (Fernandez, et al. 96) is a collection of tools for analysing LOTOS programs. LOTOS
programs are translated into state transition systems for verification. CADP contains tools that support symbolic
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representation of state machines, computation of bisimulations for comparing finite state machines, verification of
properties in various temporal logics, as well as compositional state space generation. To control intermediate state
explosion, a semi-composition operator is used that restricts the behaviour of intermediate subsystems according to
contextual interfaces (Krimm and Mounier 97).

The FDR tool (Roscoe 94) checks that a CSP program (Hoare 85) refines its specifications specified as CSP
processes. The Concurrency Workbench (Cleaveland, et al. 93b) is an automated tool for analysing networks of
finite processes expressed in CCS (Milner 89). Its verification capabilities include equivalence checking between
CCS processes, and the checking of properties expressed in a modal logic based on the propositional µ-calculus.
FDR and the Concurrency Workbench support minimisation of state machines, which may be used for performing
compositional state space generation. However, this possibility is not made explicit, and the problem of
intermediate state explosion is not addressed.

In all of the tools mentioned above that support CRA, properties can be checked only if they involve the globally
observable behaviour of the system. As discussed, Tracta provides techniques that have the unique feature of
allowing properties to contain internal actions of subsystems.

Case study: the RMTP protocol

Throughout the paper we illustrate our approach using a Reliable Multicast Transport Protocol (RMTP) (Lin and
Paul 96). The protocol is designed for applications that cannot tolerate data loss. It provides sequenced, loss-less
delivery of data from a sender to a group of receivers, at the expense of delay. Reliability is achieved by a periodic
transmission of acknowledgements by the receivers and a selective retransmission mechanism by the sender. For
scalability, receivers are grouped into a hierarchy of local regions, with a Designated Receiver (DR) in each of
those regions. Receivers in each local region send their acknowledgements to the corresponding DR, DRs send
their acknowledgements to the higher level DRs or to the sender (Figure 1), thereby avoiding the
acknowledgement implosion problem. DRs cache received data and are in charge of retransmissions within their
local regions, thus decreasing end-to-end latency. The term Acknowledgement Processor (AP) is used to denote
either a designated receiver or the sender, when referring to them as entities that receive and process
acknowledgements. Receivers that are not designated receivers are referred to as ordinary receivers.

REC_B

   Ack

   Router

Ordinary
Receiver

  SENDER

Designated
Receiver

 DES_REC_B

DES_REC_A

REC_C REC_A REC_D

  Sender

Figure 1. A multicast tree of receivers

To cater for situations where designated receivers may fail, receivers use a mechanism to dynamically select the
nearest operational AP in the multicast tree. This is the part of the RMTP protocol on which our case study
focuses. In RMTP, dynamic selection of APs is achieved by the use of a special packet, called the
SEND_ACK_TO_ME packet. The sender and all DRs periodically advertise themselves by multicasting
SEND_ACK_TO_ME packets along their sub-trees. These packets are tagged with the same initial TIME_TO_LIVE

values. Routers decrement the TIME_TO_LIVE value when forwarding packets. Therefore a larger TIME_TO_LIVE

value indicates a closer proximity in the multicast tree. On receipt of a SEND_ACK_TO_ME packet, a receiver
compares the TIME_TO_LIVE value associated with the incoming packet with that associated with the AP currently
selected. The receiver switches to a new AP if the incoming packet has a larger TIME_TO_LIVE value. When a
receiver fails to receive a new SEND_ACK_TO_ME packet from the currently selected AP after a certain period of
time, it assumes failure of the AP and initiates a new selection round.
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Paper structure

This paper presents an overview of the Tracta approach. It places particular emphasis on describing the way in
which the software architecture of a distributed system can be fruitfully exploited for the analysis of the system
behaviour. The remainder of the paper is organised as follows. Section 2 presents the way in which system
behaviour is formally specified in Tracta, based on the software architecture. Section 3 focuses on the expression
and checking of safety and liveness properties. Section 4 briefly describes the Tracta tool in terms of its
environment, its main modules and the underlying algorithms. In all sections, we illustrate the concepts presented
by means of the RMTP case study. Finally, in section 5, we conclude with a discussion and plans for future work.

2. Tracta as a method

2.1 Description of software architectures

Software architecture has been identified as a promising approach to bridging the gap between requirements and
implementations in the design of complex systems. Software architecture describes the gross organisation of a
system in terms of its components and their interactions. Darwin (Magee, et al. 95) is an architecture description
language that has been extensively used for specifying the structure of distributed systems and subsequently
directing their construction (Magee, et al. 95, Magee, et al. 94). It has both a textual and a graphical syntax with
appropriate tool support (see section 4.1). Darwin describes a system in terms of components that manage the
implementation of services. In general, systems have a hierarchical structure, as their components can themselves
be defined as instances of composite component types with substructure.

Behavioural View Service View

Structural View

Analysis Construction/
implementation

Figure 2. Common structural view with service and behavioural views

Darwin is a language that supports multiple views, two of which are the behavioural view (for behaviour analysis)
and the service view (for construction) (Figure 2). Each view is an elaboration of the basic structural view: the
skeleton upon which we hang the flesh of behaviour specification or service implementation (Kramer and Magee
97, Magee, et al. 97). In this section we use the RMTP case study to illustrate how a behavioural model can be
produced based on the Darwin description of software architecture.

In the RMTP case study, each ordinary and designated receiver is further decomposed into three primitive
components (Figure 4). The first component implements the main functionality of the receiver, which is the
dynamic selection of an acknowledgement processor (e.g. component RA_RECEIVER for REC_A and component
DRA_DES_RECVR for DES_REC_A). The second component implements the timeouts that initiate the selection
of a new acknowledgement processor (e.g. components RA_WATCH and DRA_DES_WTCH). The third
component implements an unreliable channel that may lose messages (e.g. components RA_CHANNEL and
DRA_DES_CHNL). Note that the above components can be obtained by instantiating the appropriate component
types. However, since analysis is performed on an instantiated software architecture, we only discuss component
instances in the rest of this paper.

Consider ordinary receiver REC_A in Figure 1, for example. Figure 3 presents the architectural description of
component REC_A, which encapsulates the three components. In Darwin, communicating actions take place



5

where portals of components (represented as grey dots) are bound together. A portal is an interface instance and
has a type that (at this structure level) is simply a set of names. These names refer to actions or events shared
between bound components. For example, interface ra_timer in Figure 3 is a composite interface instance of type
TIMER_OPER, defined in Darwin as follows:

portal ra_timer:TIMER_OPER

interface TIMER_OPER {tmout; reset;}

Portals can be given local names, however binding is allowed only between portals of the same type. In Darwin, a
component interacts with its environment through an external interface, and encapsulates all interactions among its
sub-components that do not form part of this interface. The external interface of component REC_A consists of the
portals adv.0 and adv.1.

  RA_CHANNEL

  RA_WATCH

    RA_RECEIVER

 ra_mes

  ra_sel

adv.0

REC_A

 ra_timer

adv.1

ra_adv.0

ra_adv.1

Figure 3. Structural view of the ordinary receiver REC_A in Darwin

The architectural hierarchy of components of the RMTP illustrated in Figure 4 reflects the multicast tree of Figure
1. Receivers REC_C and REC_D have not been included in the case study, as they exhibit identical behaviour to
that of REC_B and REC_A, respectively. All grey-coloured components in the figure represent properties for
analysis, as discussed in Section 3. Finally components RB_STBLY under REC_B, and INTERM, have been
added to the basic architecture for analysis purposes.

2.2 Attaching behaviour to software architectures

In general, the software architecture of a system in Darwin has a hierarchical structure, with primitive components
at the leaves and composite components at the nodes of the hierarchy. In Tracta behaviour is formally modelled in
terms of labelled transition systems. More specifically, behaviour is attached to the software architecture by
specifying a labelled transition system for each primitive component in the hierarchy. The behaviour of composite
components is computed from that of their constituent parts. For this process, all necessary information related to
the structure and interconnections of components is extracted from the architectural description of the system.

Labelled transition systems (LTS) can be used to model the behaviour of communicating processes in a distributed
program. An LTS contains all the reachable states and executable transitions of a process. The model has been
widely used in the literature for specifying and analysing distributed programs (Ghezzi, et al. 91, Kemppainen, et
al. 92, Rabinovich 92, Valmari 92).

Let States be the universal set of states, L be the universal set of observable action labels, and Act = L ∪ {τ}, where
τ is used to denote an action that is internal to a subsystem, and therefore unobservable by its environment. An
LTS of a process P is a quadruple < S, A, ∆, q > where

(i) S ⊆  States is a set of states;

(ii) A = αP ∪ {τ}, where αP ⊆  L denotes the communicating alphabet of P;

(iii) ∆ ⊆  S × A × S, denotes a transition relation that maps from a state and an action onto another state;
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(iv) q ∈  S indicates the initial state of P.

Since there is a one-to-one mapping between a process P and its LTS, we use the term process and LTS
interchangeably.

We say that an LTS < S, A, ∆, q > transits with action a∈ A into another LTS < S, A, ∆, q’ > if (q, a, q’) ∈  ∆. That
is,

< S, A, ∆, q >  → a < S, A, ∆, q’ > if (q, a, q’) ∈  ∆.

A process P = < S, A, ∆, q > is deterministic if ∀  s, s’, s’’ ∈  S,  ((s, a, s’) ∈  ∆ ∧  (s, a, s’’) ∈  ∆) ⇒ s' = s'', otherwise
it is non-deterministic. A trace of a process P is a sequence of observable actions that P can perform starting from
its initial state (Hoare 85). We denote the set of possible traces of a process P as tr(P).

The behaviour of a composite component is obtained from the concurrent execution of its constituent parts. In
terms of LTS, a concurrent system is described by the parallel composition of its component processes. Formally,
the parallel composition operator || is a binary operator. It takes two LTSs P = <S1, A1, ∆1, q1> and Q = < S2, A2, ∆2,
q2 > as arguments, and returns the LTS P||Q = < S1 × S2, A1 ∪  A2, ∆, (q1, q2) >, where Rule 1 describes the
transitional semantics of ∆:

Rule 1: Let a∈ Act. Then:

QPQP

PP
a

a

||’||

’

→
→

    a∉ αQ
’||||

’

QPQP

QQ
a

a

→
→

    a∉ αP

’||’||

’,’

QPQP

QQPP
a

aa

→
→→

    a ≠ τ

The parallel composition operator is both commutative and associative. Therefore the order in which processes are
composed is insignificant. According to the composition operator described, processes communicate by
synchronisation on actions common to their alphabets with interleaving of the remaining actions. Modelling of
primitive components is therefore sensitive to the selection of action names. Global name sensitivity is impractical
in distributed systems where component specifications may be reused or may have been developed independently.
We therefore need to equip the LTS model with operators that reflect the notion of external interfaces as well as
bindings between Darwin interfaces.

In Tracta, a component defines a scope for the actions in its behaviour. To make this component communicate with
its environment, a relabelling operator is necessary. Binding portals in Darwin corresponds to relabelling with
common names the corresponding actions in LTSs. According to the semantics of the composition operator, these
actions are then forced to execute synchronously. In Darwin, a component interacts with its environment through
an external interface, and encapsulates all interactions among its sub-components that do not form part of this
interface. In terms of LTSs, actions in component behaviour are hidden (i.e. made unobservable) unless they
belong to the external interface of the component. The hiding and relabelling operators supported by Tracta are
formally defined as follows.

The hiding operator ↑ takes as arguments an LTS P = <S1, A1, ∆1, q1> and a set M ∈  L and returns the LTS P↑M =
<S1, (A1 ∩ M)∪ {τ}, ∆, q1>, where the semantics for ∆ is given by Rule 2 below:

Rule 2: Let a ∈ Act. Then:

MPMP

PP
a

a

↑→↑
→

’

’
    a ∈  M

MPMP

PP a

↑→↑
→

τ ’

’
    a ∉  M
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The relabelling operator / takes an LTS P = <S1, A1, ∆1, q1> and a function f: Act  → Act such that f(τ) = τ, and
returns the LTS P/f = <S1, f(A1), ∆, q1>, where the semantics for the transition relation of P/f is given by Rule 3
below:

Rule 3: Let a ∈ Act. Then:

fPfP

PP
af

a

/’/

’
)( →

→

Finally, we wish to be able to express the fact that any component C in a system can be substituted by another
component C’, on condition that C and C’ have the same external interface and that their behaviours in terms of
this interface are indistinguishable. This is reflected in our model by equating LTSs that are equivalent with respect
to weak semantic (or observational) equivalence (Milner 89). Weak semantic equivalence has the desirable
property of being a congruence (Milner 89) with respect to the operators used in LTS expressions. It equates
systems that exhibit the same behaviour to the external observer who cannot realise the occurrence of τ-actions.

Formally, let ℘  be the universal set of LTS, and P ⇒a   P’ denote ’** PP a → ττ , where τ* means zero or more τs.
Then weak semantic equivalence ≈ is the union of all relations R ⊆  ℘×℘  satisfying that (P, Q) ∈  R implies:

1. αP = αQ;

2. ∀  a ∈  L ∪ {ε}, where L = Act – {τ}, and ε is the empty sequence:

•  P ⇒a   P’ implies ∃  Q', Q ⇒a   Q’ and (P', Q') ∈  R.

•  Q ⇒a   Q’ implies ∃  P', P ⇒a   P’ and (P', Q') ∈  R.

Summary

In Tracta, the hierarchy of the software architecture is used both for deriving and analysing the behaviour of the
system in stages. Each primitive component is associated with behaviour explicitly expressed as an LTS. The
behaviour of every composite component is described by the parallel composition of the LTSs of its sub-
components, where relabelling is applied based on the bindings between these sub-components in the software
architecture. The LTS of the composite component can therefore be computed and subsequently checked against
local properties. The external interface of the component also determines which actions in the LTS must be hidden.
The resulting LTS is minimised with respect to weak semantic equivalence, before being used for the computation
of more composite components.

2.3 Modelling the behaviour of components of RMTP

In our case study, we have modelled and analysed the part of the RMTP protocol that deals with dynamic selection
of acknowledgement processors for the multicast tree depicted in Figure 1. In this section we make a detailed
presentation of the way we have modelled the behaviour of an ordinary receiver, REC_A, and a designated
receiver, DES_REC_A. We have chosen to discuss these, as their behaviour is both representative of that of other
components in the system, but also simple enough to allow a clear graphical illustration (see Figures 5 and 6).

In the RMTP, all receivers initially select the sender as their acknowledgement processor. This is reflected in the
initial states of the LTSs that describe their behaviour. Three processes are associated with each ordinary and
designated receiver in the multicast tree. As illustrated in Figure 4, the behaviour of ordinary receiver REC_A is
described by the parallel composition of components RA_RECEIVER, RA_WATCH and RA_CHANNEL.
Actions in all three components of REC_A are prefixed with “ra_” to differentiate them from actions of other
components.  This is to reflect the fact that a component defines a scope for actions in its behaviour. Relabelling
can then be applied so as to make specific actions synchronise.
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RA_WATCHLV_RECA’

SAF_LC_REG1’

Figure 4. Compositional hierarchy for the RMTP

The RA_CHANNEL process models a lossy channel that receives advertisements from acknowledgement
processors above the receiver (actions ra_adv.0, ra_adv.1, where in general 0 represents the sender and 1
represents DES_REC_A). It non-deterministically decides to transmit them to RA_RECEIVER (actions ra_mes.0,
ra_mes.1), or lose them. The specification assumes fair execution in the sense that unfair execution sequences,
where RA_CHANNEL keeps losing all messages, are ignored.

In general, we model channels as non-deterministic processes. This is because we want to express the fact that a
channel may be in a state where it has committed to transmit. This will permit detection of possible deadlocks,
which might be concealed with a deterministic model where losing a message is always a legal alternative.
Moreover channels have a capacity of one message. We have avoided adding buffers in our example as they can
significantly complicate and increase the size of the case study. Buffers are not necessary because the channels can
always deal with the messages they contain and then be ready to receive new messages. As a result, the capacity of
one does not introduce any deadlocks.

Process RA_WATCH models the time-out associated with the selection of a new acknowledgement processor
(AP). Whenever an AP is selected by RA_RECEIVER (ra_sel.0, ra_sel.1), RA_WATCH sets a timer
(ra_set_tmout) after which stage a timeout may occur. As illustrated in Figure 3, action ra_set_tmout does not
belong to the external interface of component RA_WATCH and is therefore substituted by the internal τ action.
When RA_RECEIVER receives a message from its currently selected AP, it resets the timer (ra_timer.reset).
When a timeout occurs (ra_timer.tmout), RA_RECEIVER assumes that its current AP has failed. It moves to state
NO_AP (no acknowledgement processor currently selected) and the selection of a new AP is initiated.
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Process RA_RECEIVER is in charge of selecting an AP. When it is in state NO_AP, it selects the AP whose
advertisement it receives first (ra_mes.0, ra_mes.1). The currently selected AP is changed whenever an
advertisement is received from a nearer AP (see transition (DR0, ra_mes.1, SEL1) in Figure 5). Based on the
Darwin structure of REC_A (Figure 3), its behaviour is described by the following expression:

REC_A = (RA_CHANNEL || RA_WATCH || RA_RECEIVER)

/ {adv.0/ra_adv.0, adv.1/ra_adv.1} ↑ {adv.0, adv.1}.

ra_timer.tmout

ra_timer.reset

ra_mes.1

ra_sel.0

ra_mes.1

ra_sel.1

ra_timer.tmout

ra_timer.reset

ra_mes.0

ra_mes.0

DR0

DR1

NO_AP

SEL1

SEL0

RESET_1

RESET_0

RA_RECEIVER

ra_mes.1

ra_mes.0

ra_mes.0

ra_adv.0
ra_adv.1

ra_adv.1 ra_adv.0

ra_mes.1

RA_CHANNEL

EMPTYTRANS_1 TRANS_0

START
TMOUT ra_sel.0

ra_sel.1
ra_timer.reset ra_sel.0

ra_sel.1

ra_set_tmout

RA_WATCH

WAIT
NEW DRWATCH

ra_timer.tmout

Figure 5. LTS of the receiver REC_A

dra_timer.tmout
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dra_timer.reset
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DRA_DES_WTCH
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dra_adv.1 dra_adv.1

dra_faildra_sel.0

dra_fail

dra_timer.tmout

dra_timer.reset

dra_mes.0
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NO_DR

SEL0

RESET_0

DRA_DES_RECVR

dra_mes.0

dra_fail

dra_adv.0

dra_mes.0

dra_adv.0

dra_fail dra_adv.0

DRA_DES_CHNL

EMPTYFAILED
RECVR

TRANS_0

dra_fail

Figure 6. LTS of the designated receiver DES_REC_A
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All advertisements ra_adv* are relabelled to adv*, to make them synchronise with the corresponding actions of
other components. These actions constitute the external interface of REC_A. The behaviour of REC_B is modelled
in a similar way, with the difference that it can additionally receive messages from DES_REC_B. For analysis
purposes, we have added component RB_STBLY to REC_B (see Figure 4). This component simply records the
fact that RB_RECEIVER is stable, i.e. that it is in a state where it has a currently selected acknowledgement
processor. All stable states s in REC_B are thus distinguished by the existence of a (s, rb_stable, s) transition. We
do not hide action rb_stable in our case study.

Figure 6 illustrates the behaviour of designated receiver DES_REC_A. Designated receivers behave like ordinary
receivers, except that they may fail and advertise themselves (for DES_REC_A, actions dra_fail, dra_adv.1,
respectively). In our case study, we do not hide actions related to the failure of designated receivers. Although
these actions are not part of the external interface, we want them to be visible at the global system level. The
behaviour of DES_REC_A is expressed by the following expression:

DES_REC_A = (DRA_DES_CHNL || DRA_DES_WTCH || DRA_DES_RECVR)

        / {adv.0/dra_adv.0, adv.1/dra_adv.1} ↑ {adv.0, adv.1, dra_fail}.

Note that we have not modelled failure for ordinary receivers and the sender. If the sender fails, the multicast
session is cancelled, in which case RMTP does not need to fulfil its objectives. Properties of the ordinary receivers
are not expected to hold when the latter fail. Moreover, failures of ordinary receivers do not affect the behaviour of
their environment, and may therefore be ignored. Routers have not been specified as separate processes because
our model directly supports multicast by the synchronisation of actions that are common to the process alphabets.

3. Expressing and checking properties

In model checking, a model for an abstraction of a system is verified against a set of properties that constitute the
system specifications. Tracta checks that a system, described as a collection of communicating LTSs organised in a
hierarchical structure, satisfies its required properties. Properties are separated into two classes: safety and liveness
(Manna and Pnueli  92, Andrews 91). A safety property asserts that the program never enters an undesirable state.
For example, mutual exclusion is a safety property that specifies the absence of a program state where a common
resource is simultaneously accessed by more than one client. A liveness property asserts that a program eventually
enters a desirable state. For example, the assertion that a program will eventually close a file after opening it, is a
liveness property.

In the LTS model for system behaviour, characteristics of (groups of) states can only be distinguished in terms of
action scenarios (sequences of transitions), the occurrence of which guarantee these characteristics for the states
reached. In such settings, the classification of properties into safety and liveness can be realised as follows. Safety
properties express the fact that subsequent to specific scenarios, the occurrence of some actions must be prevented
if undesirable system states are to be avoided. On the other hand, liveness properties ensure progress in a system
by enforcing the eventual occurrence of actions following specific scenarios. In this context, scenarios express the
conditions that make these eventualities necessary.

In this section, we present how properties are expressed in Tracta, as well as the checking mechanisms that have
been introduced in the method in order to specifically address issues related to CRA techniques.

3.1 Limitations of the conventional approach to compositional reachability analysis

Promising results have been reported in the literature on the use of a compositional approach to derive the overall
system behaviour using reachability analysis (Sabnani, et al. 89, Tai and Koppol 93, Yeh 93a). In compositional
reachability analysis (CRA) techniques, the model of the target system is given as an LTS that describes an
abstraction of the system behaviour, according to the requirements of the user. As described, the analysis proceeds
in a bottom-up manner by gradual composition of the LTS of the overall system from those of its subsystems. At
each intermediate step, the LTS of a subsystem is simplified by hiding internal actions and subsequently
minimising the LTS with respect to observational equivalence.
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The key to the success of CRA techniques is to employ a modular software architecture and hide as many internal
actions as possible in each subsystem, thereby producing a simpler LTS in general. However, the properties that
are available for reasoning in the analysis are then constrained by the set of remaining globally observable actions.
In order to check properties that may involve actions internal to subsystems, these actions must be exposed at the
global graph of the system. This compromises the CRA approach. The objective is to retain the freedom of
abstracting (by hiding) (sub)system behaviour at the various levels of the system hierarchical structure, without
compromising the effectiveness of analysis.

One of the main contributions of the Tracta approach to compositional methods is the following: for both safety
and liveness properties, Tracta provides checking mechanisms that are independent from the actions that remain
globally observable in the system state graph (Cheung, et al. 97, Cheung and Kramer 96a). These mechanisms rely
on well-defined transformations that are applied to the properties specified by the system developer. All
transformations are performed automatically and are therefore transparent to the user.

3.2 Safety properties

In Tracta, a safety property is specified by the user as a deterministic LTS P = < S, A, ∆, p > that contains no τ-
transitions. Property P exclusively reasons about occurrences of actions that belong to its alphabet A. More
specifically, the property defines the set T of acceptable behaviours over A as follows: T = {w ∈  A* | w ∈   tr(P)}.
Let Sys be a system to be verified against property P. Sys will then be said to satisfy P if and only if tr(Sys↑α P) ⊆
tr(P). Informally, a system Sys satisfies a property P if Sys can only generate traces which, when restricted to the
alphabet of P, are acceptable to P.

In order to capture undesirable traces of system behaviour, we have introduced into our model a trap state π with
the following semantics: a process that enters state π transits into process Π = < {π}, Act, {} , π >, which can
potentially perform any action but never actually does (similar to process STOPAct in CSP (Hoare 85)). Process Π
exhibits non-standard behaviour in the context of composition and hiding, expressed by the following definitions
(these definitions overload Rules 1-2 that describe the transitional semantics of operators || and ↑, respectively).

•  ∀  Q ∈  ℘ (℘ is the universal set of LTSs), Q || Π =def Π || Q =def Π

•  ∀  M ⊆  L, Π ↑ M =def Π

Finally, process Π must be distinguished from any other process in ℘ . This is performed by adding to the
definition of weak semantic equivalence (section 2.2), condition “3. (P, Q) ∈  R implies (P = Π iff Q = Π)”.

Tracta uses the following mechanism for checking that a property P = < S, A, ∆, p > is satisfied by a system Sys. P
is automatically converted into its image process P’ = < S∪ {π}, A, ∆’, p >, where ∆’ is defined as follows:

•  ∆’ = ∆ ∪  {(s, a, π) | s ∈  S, a ∈  A, and ∃/ s’ ∈  S: (s, a, s’) ∈  ∆}.

P’ is then inserted in the compositional hierarchy of the system Sys, to be composed into the (sub)system to which
property P refers. Informally, the image process P’ is obtained by replacing any undefined transition in P with a
transition to π. This means that P’ monitors the behaviour of the (sub)system with which it is composed, without
interfering with it. However, if the behaviour is not acceptable to property P, P’ forces the subsystem into the trap
state, which records the fact that a violation has occurred and prunes all behaviours subsequent to the violation.

We have proven (Cheung and Kramer 96a, Giannakopoulou 95) that properties thus introduced into analysis are
violated if and only if π is a reachable state in the LTS of the global system. This result is not affected by the
hiding of actions at intermediate stages of CRA. Tracta therefore reduces the checking of safety properties to a π
reachability problem. Moreover, in the absence of violations, the global LTS obtained for the system under
analysis is observationally equivalent to that which would have been obtained if image properties had not been
introduced into the compositional hierarchy.
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An important benefit of the Tracta approach to safety property checking is that it may significantly reduce the size
of both intermediate and the final LTSs for a system, in the presence of property violations. This is because Tracta
does not explore the reachable states of the system that follow the violation of a safety property. A limitation of the
approach is that the violation of any property is mapped to the same state π. This means that when multiple
properties have been introduced into analysis, it may be difficult to identify which properties have been violated in
the global LTS of the system.

When the π state is reachable, a useful kind of diagnostic information consists of providing a trace of the system
leading to the violating state. This trace often identifies the property that has been violated. For a more detailed
presentation of the approach to safety property checking the interested reader is referred to (Cheung and Kramer
96a).

 rb_sel.2

SAF_LC_REG1  drb_fail
 0  1

 rb_sel.2
drb_fail

 π

 rb_sel.2

SAF_LC_REG1’  drb_fail
 0  1

Figure 7. Safety property in RMTP

In the RMTP case study, we have included safety property SAF_LC_REG1 that refers to component LOC_REG1.
The property states that subsequently to the failure of DES_REC_B, no receiver in its sub-tree (REC_B in our case
study) selects DES_REC_B as its acknowledgement processor. Figure 7 illustrates property SAF_LC_REG1
together with its corresponding image process, which has been included in the compositional hierarchy as depicted
in Figure 4. Note that action rb_sel.2 does not form part of the communication interface of component REC_B.
However, since it is used in the expression of property SAF_LC_REG1 of subsystem LOC_REG1, its hiding must
be postponed until the next level of the hierarchy of Figure 4.

3.3 Liveness properties

Liveness properties reason about infinite traces of a system. They are therefore specified in terms of Büchi
automata - finite state machines that accept infinite words. It has been proven that the expressive power of Büchi
automata is larger than that of linear time temporal logic (LTL) (Gribomont and Wolper 89). In general, any
formula of LTL can be automatically translated into a Büchi automaton (Gerth, et al. 95, Gribomont and Wolper
89).

A Büchi automaton B is a 5-tuple < S, A, ∆, q0, F >, where S is a finite set of states, A is a set of actions, ∆ ⊆
S×A×S is a set of transitions, q0∈ S is the initial state, and F⊆ S is a set of accepting states.  

An execution of B on an infinite word w = a0a1a2…over A is an infinite sequence σ = q0q1q2... of elements of S,
where (qi, ai, qi+1) ∈  ∆, ∀  i ≥ 0. For infinite words that include actions outside A, we extend the definition of an
execution as follows. An execution of B on an infinite word w = a1a2a3…over A1 ⊇  A is an infinite sequence σ =
q0q1q2... of elements of S, where:

 ∀  i ≥ 0,  ((qi, ai, qi+1) ∈  ∆ if ai ∈  A) and (qi = qi+1  if ai ∉  A).

In other words, at any state s of B, the effect of an action a ∉  A on some execution of B is the same as if transition
(s, a, s) belonged to ∆. An execution of B is accepting if it contains some accepting state of B an infinite number of
times. B accepts a word w if there exists an accepting execution of B on w.
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Figure 8. Liveness properties in RMTP

In our RMTP case study, a desirable feature of the dynamic selection mechanism is that it is always the case that,
upon failure of a designated receiver, all receivers in its sub-tree eventually select a different acknowledgement
processor. For component REC_A this property reduces to checking that if DES_REC_A fails (dra_fail), then
REC_A is eventually able to select SENDER as its acknowledgement processor (ra_sel.0). The property is
expressed as �dra_fail ⇒  ◊ra_sel.0) in the linear temporal logic LTL (Gribomont and Wolper 89). Büchi
automaton LV_RECA in Figure 8 expresses this property for REC_A. Since state 0 is the accepting state of
LV_RECA, an infinite word is accepted by LV_RECA if there exists an execution of the automaton in which state
0 appears infinitely often. Therefore LV_RECA accepts the language (dra_fail* ra_sel.0)ω, where juxtaposition
represents concatenation, and the operators * and ω denote finite and infinite repetition, respectively.

Note that property LV_RECA requires the eventual occurrence of action ra_sel.0, even in the situation where
SENDER is the currently selected AP of REC_A when action dra_fail occurs. As discussed later in this section,
the liveness checking mechanism used in our case study assumes fair choice on system transitions. As a result,
even when SENDER is the selected AP of REC_A, time-out expiration eventually happens and initiates a new
round of AP selection. Such time-out expirations reflect a delay in the receipt of advertisement messages sent from
the SENDER. If DES_REC_A has failed in the meanwhile, the protocol requires that ra_sel.0 eventually happens.
Therefore LV_RECA needs to be satisfied by our model of RMTP. A more complicated property can be used to
express that “after the failure of the currently selected AP, a new AP is eventually selected” but, for simplicity,
property LV_RECA is preferred.

Another property that we have included in our case study is LV_RECB, illustrated in Figure 8. This property refers
to REC_B and states that it is eventually the case that REC_B selects DES_REC_B to be its acknowledgement
processor (rb_sel.2). In LTL, the property is expressed as (◊rb_sel.2). We thereby wish to check that, although
initially all receivers in the system start with the SENDER as their acknowledgement processor, each one
eventually selects the one nearest to it in the multicast tree.

In the automata theoretic approach to program verification, Büchi automata are composed with the system under
analysis. In the LTS system model where no specific information is stored on states, Tracta distinguishes accepting
states of Büchi automata by means of special transitions that are added to the automata according to the following
transformation:

Definition 1: A Büchi automaton B = < S, A, ∆, q0, F> is mapped into a liveness property LTS B’ = < S, A∪ {@B},
∆’, q0> by adding a new globally unique action @B and new transitions called accepting transitions, where:

(i) @B ∉ α A; and

(ii) ∆’ = ∆ ∪  {s  → B@  s | s ∈  F}. 

Figure 8 illustrates the results of applying the transformation to properties LV_RECA and LV_RECB. The
transformation is performed automatically and transparently to the user.
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Tracta checks a liveness property expressed as a Büchi automaton B = < S, A, ∆, q0, F >, where the following
conditions hold:

1. B is deterministic (therefore a single execution of the automaton is defined on an infinite word).

2. A transition is defined at each state in S for every action in A (we use the term “B is complete” to denote this
fact).

3. Fair choice is assumed in the model of the system analysed. This means that if a choice over a set of
transitions is executed infinitely often, then each transition in the set is executed infinitely often.

A system satisfies a property expressed as a Büchi automaton if the automaton accepts all infinite executions of the
system. In a finite state system where fair choice is assumed, infinite executions can only be obtained by the
infinite repetition of states within a terminal set of states of the system, where a terminal set of states is defined as
follows:

Definition 2: A set of states C in an LTS < S, A, ∆, q > is said to be terminal if and only if:

a)  C is a strongly connected component; and

b)  C is closed under ∆, i.e., ∀  s ∈  C, (s, a, s´) ∈  ∆ ⇒  s´ ∈  C. 

Under conditions 1 to 3 presented above, we can check that a system P satisfies a property expressed by B in the
following way:

•  Compute P || B’, where B' = < S, A∪ {@B}, ∆', q0> is the liveness property LTS for B.

•  Check that each terminal set of states in P || B’ contains at least one state s such that (s, @B, s) is a transition
of P || B’ (we then say that @B is enabled in the terminal set of states). If this is the case, then P satisfies the
property. Computing all terminal sets of states in P || B’ can be performed by computing the strongly
connected components of the graph, for which there exist computationally inexpensive (linear) algorithms
(Tarjan 72).

•  If P violates the property, return diagnostic information that will guide the developer in uncovering the error
in the design. Such information consists of a trace leading to the root of the violating terminal set of states, as
well as the actions that label transitions between states in the terminal set.

•  If no violation is detected, remove all accepting transitions from the graph of the system and minimise. The
resulting LTS is equivalent to the one that would have been obtained if liveness property LTSs had not been
included into analysis.

In Tracta, liveness property LTSs are composed into the (sub)system to which they refer (see Figure 4). In this
way, Büchi automata may involve internal actions of the subsystem that are unobservable to the subsystem
environment. According to condition 3, Büchi automata introduced into analysis are complete. This means that in
exactly the same way as for safety properties, these automata simply monitor the behaviour of the system, without
interfering with it. This makes it possible to check multiple liveness properties simultaneously. Since accepting
transitions (@B) identify the property to which they correspond, it is possible to detect violations of individual
properties. Finally, it can be easily checked that observational equivalence preserves terminal sets of states.
Therefore under fair choice, violations of liveness properties thus introduced into analysis are not lost during
minimisation.

A formal proof of the mechanism presented can be found in (Giannakopoulou 98a). We summarise that the
mechanism for checking liveness properties described in this section exhibits three main desirable features
(Cheung, et al. 97). Firstly, it makes the hiding of actions independent of the liveness properties that are to be
checked in the final graph. Secondly, it checks multiple properties simultaneously, specifically identifies the
violated ones and generates the overall system behaviour. Thirdly, it avoids keeping specific information on states.
Instead, states are differentiated by the actions that can be performed. As a result, no extensions are necessary to
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the basic LTS model. The checking mechanism can easily be incorporated in any tool that supports compositional
reachability analysis, as it requires no modifications to the composition and minimisation algorithms.

Discussion

As mentioned, the liveness property checking mechanism presented here relies on three conditions. The fact that
Büchi automata are required to be complete is not a limitation of our method. A Büchi automaton can always be
made complete by adding a new state (Fernandez, et al. 92).

 a

 a

 τ
 0 2

a

 1

Figure 9. A non-deterministic Büchi automaton

On the other hand, the fact that Büchi automata introduced in analysis need to be deterministic, imposes a
restriction on the kinds of properties that may be expressed. For example, it is not possible to express with a
deterministic automaton the property that, in every system execution there is a point after which action a never
occurs again (◊ ¬ a). This property is described by the automaton illustrated in Figure 9. Non-deterministic Büchi
automata may have more than one execution on a word, and it is enough for one of them to be accepting for the
automaton to accept the word. Therefore, when a non-deterministic liveness property LTS B’ is composed with the
system, the system may contain terminal sets of states where @B is not enabled, even though the system satisfies
the property expressed by B.

In these cases, rather than using the automaton for a property F of interest, one needs to use the automaton B for
¬ F (Aggarwal, et al. 90, Godefroid and Holzmann 93, Gribomont and Wolper 89). Then the system satisfies the
property if no execution of the system is accepted by B. Again the liveness property LTS B’ is composed with the
system P. The system then satisfies property F, if there is no terminal set of states in P || B’ where action @B is
enabled. Due to space limitation, we refer the interested reader to (Giannakopoulou 98a) for more details on
property checking in Tracta. There, alternative mechanisms are additionally provided, which cover cases where the
conditions imposed here are not required to hold. These mechanisms are put in the context of CRA where actions
are hidden and subsystems minimised.

Under fair choice, the search for illegal behaviour may be too coarse grained to detect all interesting violations
(Cheung, et al. 97). On the other hand, checking liveness when fairness is not taken into consideration usually
returns a large number of non-realistic violations. In (Giannakopoulou 98a) fairness is discussed in detail, and
various approaches are proposed for addressing the problem. The approaches range from explicit modelling of
fairness in the form of constraints on the system executions (Aggarwal, et al. 90, Gribomont and Wolper 89), to
efficient tests that do not involve automata and are combined with practical heuristics.
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4. Tracta as a tool

4.1 The environment
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Figure 10. Tool support for design and analysis of distributed systems

In section 2.1 we described the basic features of the Darwin architecture description language. We have also
demonstrated that the description of system structure performed in this way can be utilised to provide the
compositional hierarchy for analysis, and to direct hiding and relabelling as required. This integration needs to be
reflected in our software tools.

The Software Architect’s Assistant (SAA) (Ng, et al. 96) is a visual environment for the design and development of
distributed programs using Darwin architectural descriptions. Facilities provided include the display of multiple
integrated graphical and textual views, a flexible mechanism for recording design information and the automatic
configuration of program code and formatted reports from design diagrams. A system architecture is used by the
Darwin compiler to generate a system instance (Figure 10). The hierarchical structure of a system instance can
then be utilised for analysis. The SAA is currently being re-implemented in Java to aid portability and
interoperability. As shown in Figure 11, the new version of the SAA generates LTS expressions for compositional
analysis, based on the system architecture (@ in the figure is an ASCII representation for the hiding operator ↑).

The Tracta approach has long been supported by a tool implemented in C++. We have experimented with various
ways of linking the Tracta tool to the SAA (Figure 10). These attempts were based on providing a user interface
that would translate graphical input for LTS specifications and for the software architecture, into the format
accepted by the Tracta tool. Our experience has shown, however, that graphical descriptions of LTSs become
impractical for LTSs that involve more than a few states. We have therefore abandoned the effort of providing an
interface that will link the Tracta tool to the SAA. Rather, we have moved towards building a new tool in Java, the
LTSA (Kramer and Magee 97, Magee, et al. 97), to aid portability and interoperability of the whole environment
(Figure 10). The LTSA already implements a large part of the Tracta approach. The new tool accepts input in a
process algebra notation, called FSP for Finite State Processes. It can directly use the expressions generated by the
SAA for performing compositional analysis directed by the software architecture. We are currently working on a
tighter integration between the LTSA and the SAA.
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Figure 11. REC_A in Darwin using the SAA

4.2 Tool implementation

In this section, we describe the structure of the Tracta tool for analysing the behaviour of distributed systems. As
the tool is to be replaced by the LTSA tool, we concentrate on the algorithms that have been used to implement its
main functionality. These are independent of the specific implementation. Moreover, they form the basis of the
new tool.

The modules of the tool that implement the Tracta approach are illustrated in Figure 12, where arrows describe the
flow of information between modules.

Module 1 – Compose. This module computes the LTS for a composite component from that of its sub-
components. The LTS returned can be analysed or further composed. A standard composition algorithm can be
found in (Holzmann 91).

Among the LTSs composed, some may express safety and liveness properties or user-specified interfaces (Cheung
and Kramer 96b). Module “Compose” automatically transforms these as required by Tracta, before performing the
composition. As mentioned, the globally unique action @name labels accepting transitions of a Büchi automaton,
where name is the identifier of the corresponding liveness property. This simplifies the identification of properties
when violations are detected.  Finally, state π is internally represented by the value -1.



18

TRACTA TOOL

Record
Violations

2

Compose

1

Minimise

3

Analyse

4

Debug

5

expression describing
composite component

specifications
corresponding to
LTS

Figure 12. Modules of the Tracta tool

Module 2 - Record Violations. When fair choice is not a desirable assumption in the model of a system, the
intermediate graphs obtained by compositional analysis need to be modified according to the technique presented
in (Giannakopoulou 98a). The technique relies on the computation of τ-strongly connected components in a state-
graph G. The module uses the algorithm proposed by Aho et al. (Aho, et al. 74) to compute the strongly connected
components in the sub-graph of G defined by the τ-relation. The complexity of the algorithm is linear in the size of
the graph.

Module 3 - Minimise. This module minimises a given LTS L with respect to Milner’s weak semantic equivalence
(Milner 89). Due to the fact that minimisation takes up most of the computational effort in our analysis method, the
module implements the algorithm presented by Fernandez (Fernandez 90). In general, strong equivalence (Milner
89) can be tested in O(m n) time for a labelled transition system with m transitions and n states (Kanellakis and
Smolka 90). However, the problem can be reduced to the relational coarsest partition problem, which has been
solved by Paige and Tarjan (Paige and Tarjan 87) in O(m log n) time. The algorithm proposed by Paige and Tarjan
has been adapted by Fernandez to minimise labelled transition systems modulo strong equivalence. Minimising P
= < S, A, ∆, q0> with respect to weak equivalence, is reducible to minimising P′ = < S, A, ∆′, q0> with respect to
strong equivalence, where ∆′ is obtained from ∆ by allowing τ actions to be absorbed into visible actions
(Kanellakis and Smolka 90). Our algorithm creates two initial partitions for an LTS L, one containing the π state,
and one containing the remaining states of L. It then proceeds as prescribed in (Fernandez 90), by refining these
partitions until stability is reached. The π state has to form a partition by itself since it is by definition not
equivalent to any other state (section 2.2).

Module 4 – Analyse. This module collects information obtained during stages 1 and 3 and additionally uses the
LTSs that these modules generate in order to report the following:

•  timing results for the algorithms of composition and minimisation.

•  sizes of graphs (in terms of numbers of states and transitions) for the subsystem after composition and after
minimisation.

•  detection of safety or liveness property violations. When a liveness property violation is detected in an LTS,
the identity of the root of a terminal set of states is returned, together with the actions labelling transitions
between states in the terminal set of states. Violation of safety properties is detected by the existence of state π
in the global system graph.

•  detection of deadlock states in the composite LTS. Deadlocks are detected on the system graph as states that
have no outgoing transitions.

The report obtained by this module may be used by the developer in combination with module “Debug”, in order
to obtain useful diagnostic information that will guide the correction of errors in the design.
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Module 5 - Debug: Given an LTS L and a state s in L, this module produces a trace of L leading to s. Breadth-first
traversal of the graph guarantees the fact that the trace obtained is the shortest possible.

For the case of liveness properties, the module is used to obtain the shortest possible trace to the root of a violating
terminal set of states.

For the case of safety properties, the module is used to obtain a trace to the violating state π. This trace provides a
scenario that demonstrates how a safety property can be violated. As mentioned in section 3.2, when multiple
safety properties are simultaneously analysed, the tool can detect safety violations but it cannot distinguish which
property is violated. If the trace does not identify a property, then it must be used to trace the violation down the
compositional hierarchy.

4.3 Checking the RMTP protocol: experimental results

In our case study of the RMTP protocol, we aim at an abstracted view of the system where the effect of failures of
designated receivers on the stability of REC_B can be observed. As described in section 2.3, REC_B is considered
stable whenever it has a currently selected acknowledgement processor. We have decided to check the stability of
REC_B, as it is the ordinary receiver at the lowest level of the multicast tree, and is therefore affected by the
failures of all designated receivers in the tree. Consequently with the exception of actions dra_fail, drb_fail, and
rb_stable, all other actions are hidden as soon as they are considered internal to a subsystem.

As discussed in section 3.2, we have included safety property SAF_LC_REG1 in our case study. This property
refers to subsystem LOC_REG1 (see Figure 4). As the π state is reachable in LOC_REG1, we conclude that
property SAF_LC_REG1 is violated by the subsystem. This violation is not remedied in the system, as the π state
is also reachable in AP_SELECT.

The tool returns the following trace of LOC_REG1, which leads to the violation of property SAF_LC_REG1:
<adv.2, adv.2, drb_fail, rb_sel.2, rb_sel.2>. This trace shows that the violation may occur when DES_REC_B,
prior to its failure, broadcasts two advertisements along its sub-tree. Since rb_sel.2 can occur twice, we conclude
that RB_CHANNEL has transmitted both advertisements to RB_RECEIVER. The trace helps us construct the
following scenario that shows in detail how the property can be violated. RB_CHANNEL receives an
advertisement from DES_REC_B, transmits it to RB_RECEIVER, and then receives another advertisement from
DES_REC_B. RB_RECEIVER selects DES_REC_B as its acknowledgement processor. Subsequently a time-out
occurs, which initiates the selection mechanism of RB_RECEIVER. RB_CHANNEL still contains the second
advertisement, which it now transmits to RB_RECEIVER. As a result, RB_RECEIVER performs the second
rb_sel.2.

This violation represents a typical situation in distributed systems. In an asynchronous environment, channels need
to be equipped with substantial buffers. Consequently, nodes of the system may be receiving old messages from a
failed node, thus getting the impression that the node is still alive. In such situations, property SAF_LC_REG1
would be turned into a property, which states that: “at some stage subsequent to the failure of DES_REC_B,
REC_B never again selects DES_REC_B as its acknowledgement processor”. In our simplified case study where
the channel has capacity one, it is enough for the property to allow the occurrence of rb_sel.2 at most twice
subsequent to drb_fail. This modification to property SAF_LC_REG1 removes the violation from the system
analysed.     

Liveness properties are checked on the global graph for the system. By analysing AP_SELECT we have found that
property LV_RECA is satisfied, as transition @LV_RECA is enabled in all terminal sets of states of AP_SELECT.
On the other hand, property LV_RECB is violated, and the tool returns trace < drb_fail, dra_fail >. The trace
provides a path to the root of a terminal set of states where @LV_RECB is not enabled. However, this represents
legal behaviour of the system, as DES_REC_B may fail very early in a multicast session, before any of its
advertisements are received by REC_B in its sub-tree. In order to verify that there is no error in our design, we
disable action drb_fail and analyse the property again. Indeed when DES_REC_B never fails, REC_B eventually
selects DES_REC_B as its acknowledgement processor.

After analysing the properties introduced in our case study, accepting transitions are removed, and the resulting
LTS is minimised. The abstracted behaviour of AP_SELECT that we aimed at is thus obtained, and is illustrated in
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Figure 13. It is clear from this view of the system that failures of designated receivers do not affect the stability of
REC_B.
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Figure 13. Final LTS obtained for AP_SELECT

The Tracta tool has been used for performing the RMTP case study using standard compositional reachability
analysis (CRA) and traditional reachability analysis (RA). In CRA, analysis proceeds in the same way as in Tracta.
The difference is that property automata are not included in the compositional hierarchy. As a result, actions
involved in liveness properties need to be globally exposed for these properties to be checked. To be fair in our
comparisons, we have not exposed internal actions involved in the safety property when performing CRA. As
already mentioned, the safety property of our RMTP case study can be checked at a subsystem level.

RMTP – Dynamic
Tracta CRA Traditional RA

Selection of AP #states #trans. #states #trans. #states #trans.

Largest subsystem

(before minimisation)

153 1096 252 1286 not applicable

System to be analysed

(before minimisation)

129 869 236

(properties

1151

not included)

720 000

(properties

5 724 208

not included)

System to be analysed

(after minimisation)

46 254 186

(properties

863

not included)

not applicable

Final system

(after analysis)

4 8 4 8 720 000

(too large to

5 724 208

minimise)

Table 1. Size of RMTP case study for different approaches to analysis

In Table 1, we compare Tracta and CRA in terms of the size of the LTSs obtained. Both in TRACTA and CRA, it is
possible to obtain an intermediate subsystem that is larger than the final system. However the sizes of these
subsystems are small enough so as not to require the inclusion of contextual interfaces into analysis (Cheung and
Kramer 96b). When compared to CRA, Tracta achieves a reduction in the size of LTSs at all levels of the hierarchy,
even though in Tracta property LTSs have been included in the system.

Traditional reachability analysis computes the reachable states of a system from the LTSs of its components, in a
single step. From Table 1, it is obvious that the RMTP example justifies a compositional approach to analysis. With
traditional reachability analysis, a system of 720 000 states and 5 724 208 transitions needs to be analysed, as
compared to a system of 46 states and 254 transitions in Tracta. The system obtained by traditional reachability
analysis is too large to be minimised by our tool. We are thus unable to generate an abstraction of the system
behaviour, which we have done with Tracta and CRA.

The considerable reduction achieved by compositional methods in this case study stems from the fact that a large
amount of interleaving is involved between actions that may be made internal to subsystems. Traditional
reachability analysis computes all possible interleaving. Compositional approaches simplify the interleaving
between internal actions at intermediate stages of the analysis.
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5. Conclusions and future work

Analysis plays a significant role in the design of complex systems. Software developers are encouraged to identify
critical and error-prone parts in a system behaviour by the construction of models. Analysis then provides the
capability of automatically checking these models thereby increasing confidence in a design. In order to be more
readily usable, analysis must form an integral part of the software development process. In this paper, we have
presented the way in which this goal has motivated our choices when developing the Tracta approach - a
compositional technique for analysing the behaviour of distributed systems based on their software architecture.

In our approach, software architectures described in Darwin provide the common structure or skeleton of the
system during development, i.e. behaviour specification, behaviour analysis, and system implementation. The
architectural hierarchy of components in the system, as described in Darwin, is used to direct the Tracta approach
into performing analysis compositionally. This is one of the main advantages of Tracta as compared to other CRA
techniques. With Tracta, analysis is not an isolated stage in the software development process. Rather, there is a
flow of information between the model for analysis and the design for construction. This information includes
changes imposed to the basic structure of the system during development.

One of the appealing characteristics of Tracta is the uniformity of the formalisms for behaviour and property
specification. Both properties and processes in the system are specified in terms of state machines. Checking is
performed by inclusion of properties in the compositional hierarchy. It is a unique feature of Tracta, and one of its
main contributions in the domain of CRA techniques, that its property checking mechanisms are independent of
actions hidden at intermediate phases of analysis. Moreover, properties introduced into analysis may play a
significant role in reducing the size of the state space to be analysed in the presence of illegal behaviours. All
transformations introduced by the Tracta checking mechanisms are performed automatically and transparently to
the user. Finally, besides returning useful results about the system under analysis, Tracta generates an abstracted
view of system behaviour, according to the user requirements.

Throughout the paper, we have used the case study of a reliable multicast transport protocol (RMTP) to illustrate
our discussions. The case study has demonstrated that compositional approaches may significantly reduce state
explosion. Moreover, the property checking mechanisms introduced by Tracta may further increase the reduction
obtained with standard CRA techniques.

Although the Tracta approach may significantly reduce the size of the system to be analysed, it is still susceptible
to state explosion. In fact, compositional analysis does not always prove more efficient than reachability analysis,
especially when the latter is performed “on the fly” and is combined with partial-order reduction (Fernandez, et al.
96, Holzmann, et al. 92). Our future plans include comparing Tracta with such techniques in order to identify, if
possible, the kinds of systems for which one or the other approach proves more efficient.

A further extension to the Tracta tool that is under consideration is to provide automatic support into translating
LTL formulae into Büchi automata for analysis (Gerth, et al. 95). However, such algorithms do not construct
minimal automata for the properties. In our experience, the liveness properties commonly checked tend to fall into
some basic patterns. Therefore, rather than algorithmically deriving the property automata, we are experimenting
with the provision of basic templates for automata corresponding to those patterns most frequently encountered. As
well as providing guidance in the expression of properties, Tracta should also ideally assist the user in locating
these properties into the compositional hierarchy of the system.

An issue that arises in all compositional reachability analysis approaches is that diagnostic information obtained at
the global system graph may not contain enough information to be of practical use. An advantage of the Tracta
safety checking mechanism is that violations are recorded at intermediate systems with state π. As a result, a
counterexample obtained at the global level may be enriched with details obtained by tracing the violation down
the compositional hierarchy. We intend to provide further assistance into this process, as well as in the process of
identifying the safety property violations that correspond to the existence of state π in the final system.

Finally we are working on completing the integration of the LTSA tool supporting Tracta with the SAA tool, which
provides the visual environment for the design and construction of distributed systems. Although further work is
certainly necessary in all of the above aspects, the basic framework for performing compositional analysis by
exploiting software architectures has already been provided in the Tracta approach, and offers a promising ground
for experimentation and future enhancements.
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